

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Optical Fiber Communications (16EC430)

Year & Sem: IV-B.Tech & I-Sem

Course & Branch: B.Tech - ECE

Regulation: R16

UNIT –I INTRODUCTION TO OPTICAL FIBERS

_		Т	
1	Explain the Elements of an optical fiber Transmission link with neat sketch.	[L2][CO1]	[12M]
2	a) Explain about the Evolution of optical fiber systems.	[L2][CO1]	[6M]
	b) Illustrate on Reflection and Refraction with neat sketch.	[L2][CO1]	[6M]
3	a) Elaborate about the total internal reflection with the help of suitable optical cable		
	setup.	[L6][CO1]	[6M]
	b) Develop the Expression for Acceptance angle and Numerical aperture.	[L3][CO1]	[6M]
4	a) List the applications of optical fiber communication.	[L1][CO1]	[5M]
	b) A light wave is travelling in a semiconductor medium (GaAs) of refractive index		
	3.6.It is incident on a different semiconductor medium (AlGaAs) of refractive		
	index 3.4 & angle of incidence is 80°. Calculate numerical aperture & acceptance		
	angle. Will it result in total internal reflection? Comment on the result.	[L3][CO1]	[7M]
5	a) Consider multimode fiber that has a core refractive index of 1.488 and core		
	cladding index difference of 2.0%. Evaluate numerical aperture, critical angle and		
	acceptance angle.	[L3][CO1]	[6M]
	b) List out the merits and demerits of optical fiber communication?	[L1][CO1]	[6M]
6	a) Define critical angle and also derive the expression for critical angle.	[L1][CO1]	[6M]
	b) Discuss the single mode step Index fiber with neat sketch.	[L6][CO1]	[6M]
7	a) Explain about the Multimode Step Index fiber with neat sketch.	[L2][CO1]	[6M]
	b) Fiber has normalized frequency 26.6 & operating wavelength 1300nm, if the radius		
	of the fiber core is 25µm.Compute the numerical aperture.	[L3][CO1]	[6M]
8	a) Compare step index & graded index fiber.	[L2][CO1]	[6M]
	b) Explain about multimode Graded Index fiber with neat sketch.	[L2][CO1]	[6M]
9	a) Illustrate on Mode theory of Circular Waveguides in detail.	[L2][CO1]	[5M]
	b) Calculate number of modes of an optical fiber having diameter of 50µm		
	& $n_1 = 1.48$ & $n_2 = 1.46$ having operating wavelength $0.82 \mu m$.	[L3][CO1]	[7M]
10	a) Explain about the Snell's law and significance of numerical aperture.	[L2][CO1]	[6M]
	b) Illustrate on ray optics in detail with neat diagrams.	[L2][CO1]	[6M]
	· · · · · · · · · · · · · · · · · · ·		

UNIT –II SIGNAL DEGRADATION IN OPTICAL FIBERS

1	Demonstrate any two types of Losses in Optical Fiber Communication System.	[L2][CO2]	[12M]
2	a) Explain the Design Optimization of Single mode fibers.	[L2][CO2]	[8M]
	b) How to minimize the micro bending losses in the fiber?	[L1][CO2]	[4M]
3	a) How attenuation is caused by scattering losses & bending losses?	[L1][CO2]	[8M]
	b) Explain in detail about the Mechanisms which causes Absorption.	[L2][CO2]	[4M]
4	a) Define linear scattering. Explain about Rayleigh & Mie scattering.	[L1][CO2]	[6M]
	b) Develop the expression for waveguide dispersion.	[L3][CO2]	[6M]
5	Explain dispersion occurring in multimode fibers in detail with expressions.	[L2][CO2]	[12M]
6	a) Distinguish between intrinsic & extrinsic Absorption.	[L4][CO2]	[6M]
	b) Determine the theoretical cutoff wavelength for single mode fiber.	[L5][CO2]	[6M]
7	a) What is attenuation? Explain in detail.	[L1][CO2]	[4M]
	b) Develop the expression for material dispersion.	[L3][CO2]	[8M]
8	Analyze pulse broadening in graded index waveguides.	[L4][CO2]	[12M]
9	a) Develop the expression for total dispersion in single mode fiber.	[L3][CO2]	[6M]
	b) How refractive index profile optimizes the design in a single mode fiber?	[L1][CO2]	[6M]
10	a) Illustrate on the two main causes of Intra Modal Dispersion.	[L2][CO2]	[6M]
	b) Explain the phenomenon of Rayleigh scattering in scattering loss.	[L2][CO2]	[6M]

UNIT –III FIBER OPTICAL SOURCES AND COUPLING

1	a) Explain LED Structure with neat sketch.	[L2][CO3]	[6M]
	b) A planar LED is fabricated from GaAs which has a refractive index of 3.6.		
	(i) Calculate the optical power emitted into air as a percentage of the internal		
	optical power for the device when the transmission factor at the crystal-air		
	interface is 0.68.(ii) When the optical power generated internally is 50% of the		
	electric power supplied, determine the external power efficiency.	[L4][CO3]	[6M]
2	a) Illustrate on light source materials in detail.	[L2][CO3]	[8M]
	b) Explain about the surface emitter LED with neat diagram.	[L2][CO3]	[4M]
3	a) Explain about the modulation of LED in detail.	[L2][CO3]	[7M]
	b) Illustrate on edge emitter LED with neat diagram.	[L3][CO3]	[5M]
4	a) Explain about quantum efficiency and LED power.	[L2][CO3]	[6M]
	b) Demonstrate on direct and indirect bandgap materials in detail.	[L2][CO3]	[6M]
5	a) Explain about resonant frequencies of LASER Diode.	[L2][CO3]	[7M]
	b) A GaAs optical source with a refractive index of 3.6 is coupled to a silica fiber		
	that has a refractive index is 1.48. If the fiber and the source are in close physical		
	contact then find the Fresnel reflection at the interface and power loss in dB.	[L3][CO3]	[5M]
6	a) Develop the expression for modes and threshold condition of LASER.	[L3][CO3]	[8M]
	b) What power is radiated by an LED if its quantum efficiency is 3% and the peak		
	wavelength is 670nm?	[L1][CO3]	[4M]
7	a) Illustrate about external quantum efficiency of LASER.	[L2][CO3]	[6M]
	b) Develop the rate equation for LASER diode.	[L3][CO3]	[6M]
8	a) Explain in detail about Quantum laser.	[L2][CO3]	[6M]
	b) Illustrate about source to fiber power launching.	[L2][CO3]	[6M]
9	a) Explain in detail the various Lensing schemes for coupling improvement.	[L2][CO3]	[6M]
	b) Discuss about Fiber splicing.	[L6][CO3]	[6M]
10	a) Explain about mechanical misalignment in fiber to fiber joints.	[L2][CO3]	[6M]
	b) Demonstrate on fiber-related losses in fiber to fiber joints.	[L2][CO3]	[6M]

UNIT –IV FIBER OPTICAL RECEIVERS

1	a) Explain in detail the operation of Avalanche Photo Diode with its structure.	[L2][CO4] [7M]
	b) A photo diode has a quantum efficiency of 65% when photons of energy of	
	1.5 x 10 ⁻¹⁹ J are incident upon it. (i) Find the operating wavelength of the	
	photodiode, (ii) Calculate the incident optical power required to obtain	
	a photo current of 2.5nA when the photodiode is operating as described above.	[L3][CO4] [5M]
2	a) Explain about avalanche multiplication noise in APD diode.	[L2][CO4] [7M]
	b) Summarize the comparisons of photo detectors.	[L2][CO4] [5M]
3	a) Explain the principle behind the operation of an PIN photo diode.	[L2][CO4] [7M]
	b) Explain the simple energy band diagram for a PIN photodiode with neat diagram.	[L2][CO4] [5M]
4	a) Illustrate how noises are entered into photo detector.	[L2][CO4] [6M]
	b) Analyze photo detector receiver with simple model and equivalent circuit.	[L4][CO4] [6M]
5	a) Develop the equation for S/N ratio of an optical fiber.	[L4][CO4] [6M]
	b) List the operating parameters of Si, Ge, InGaAs for avalanche photo diode.	[L1][CO4] [6M]
6	a) Develop the expression for response time of a photodiode.	[L3][CO4] [5M]
	b) Explain the working of depletion layer photocurrent with diagram.	[L2][CO4] [7M]
7	a) List the operating parameters of Si, Ge, InGaAs for PIN diode.	[L1][CO4] [7M]
	b) A given silicon avalanche photodiode has a quantum efficiency of 65% at	
	a wavelength of 900nm. Suppose 0.5μW of optical power produces a multiplied	
	photocurrent of 10μA. Calculate the multiplication M?	[L3][CO4] [5M]
8	a) Explain the digital signal transmission for an optical receiver.	[L2][CO4] [6M]
	b) How the receiver configuration works in optical receiver?	[L1][CO4] [6M]
9	a) Explain the mechanism of error sources and disturbance in the optical pulse	[L2][CO4] [7M]
	detection with diagram.	
	b) Demonstrate any one type of Preamplifier in detail.	[L2][CO4] [5M]
10	a) Explain about the probability of error in detail.	[L2][CO4] [6M]
	b) Illustrate on the quantum limit in optical receiver.	[L2][CO4] [6M]

UNIT –V DESIGN OF ANALOG & DIGITAL SYSTEMS & WDM CONCEPTS

1	a) Discuss about error correction in digital link.	[L6][CO5]	[5M]
	b) Explain multi channel amplitude modulation with a neat block diagram.	[L2][CO5]	[7 M]
2	a) Explain the significance of system consideration in point-to-point fiber links.	[L2][CO5]	[7M]
	b) Illustrate on line coding with neat diagrams.	[L2][CO5]	[5M]
3	a) Analyze the system performance using link power budget of digital systems.	[L4][CO5]	[7M]
	b) LED spectral width of 40nm has rise time of 15ns, t _{mat} is 21ns, t _{rx} is 14ns and		
	t _{mod} is 3.9ns. Find total system rise time.	[L3][CO5]	[5M]
4	a) Summarize on system performance using rise time budget of digital systems.	[L2][CO5]	[8M]
	b) Explain about the operating principles of WDM.	[L2][CO5]	[4M]
5	a) Explain about the overview of analog links.	[L2][CO5]	[6M]
	b) An optical transmission system is constrained to have 500 GHZ channel spacing.		
	How many wavelength channels can be utilized in the 1536 to 1556 nm spectral		
	band?	[L3][CO5]	[6M]
6	a) Demonstrate on multichannel frequency modulation?	[L2][CO5]	[5M]
	b) Explain about Carrier to Noise Ratio of analog links in detail.	[L2][CO5]	[7M]
7	a) What is WDM? Explain the features of WDM.	[L1][CO5]	[6M]
	b) Explain about passive components in WDM.	[L2][CO5]	[6M]
8	a) Explain about solitons in detail.	[L2][CO5]	[6M]
	b) Illustrate on tunable sources with neat diagram.	[L2][CO5]	[6M]
9	a) Discuss about optical CDMA in detail with neat diagram.	[L6][CO5]	[6M]
	b) 2*2 biconical fiber coupler has an optical input power level of P0=400μw, the		
	output power at the other 3 ports are P1=180μw, P2=170μw, P3=12.6nw. Find		
	performance parameters.	[L3][CO5]	[6M]
10	a) List the advantages & disadvantages of using WDM in optical fiber communication	[L1][CO5]	[5M]
	system.		
	b) Explain about the applications of WDM in detail.	[L3][CO5]	[7M]

Prepared by:

1. Mr B. RAVIBABU Associate Professor/ECE 2. Mr Y. MURALI

R16

Course Code: 16EC430

Assistant Professor/ECE